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ABSTRACT

Performance of real-time applications on network comrmunication
channels are strongly related to losses and temporal delays. Sev-
eral studies showed that these network features may be correlated
and present a certain degree of memory such as bursty losses and
delays. The memory and the statistical dependence between losses
and temporal delays suggest that the channel may be well modelled
by a Hidden Markov Model (HMM) with appropriate hidden vari-
ables that capture the current state of the network. In this paper
we propose an HMM that, trained with a modified version of the
EM-algorithm, shows excellent performance in modelling typical
channel behaviors in a set of real packet links.

1. INTRODUCTION

Gilbert and Elliott works [1]{2] on modelling burst-error chan-
nels for bit-transmission showed how a simple 2-states Hidden
Markov Model (HMM) was effective in characterizing some real
communication channels. As in the case of bit-transmission chan-
nels, end-to-end packet channels show burst-loss behavior. Jiang
and Schulzrinne [10] investigated lossy behavior of packet chan-
nels finding that a2 Markov model is not able to describe appro-
priately the inter-loss behavior of channels. They also found that
delays manifest temporal dependency, i.e. they should not be as-
sumed o be a memoryless phenomenon. Salamatian and Vaton
[11] found that an HMM trained with experimental data seems to
capture channel loss behavior. Lin, Matta and Crovella [12] used
an HMM-based loss-delay modelling in the contest of TCP traffic
in order to infer loss nature in hybrid wired/wireless environments.
They found that such a kind of modelling can be used to control
TCP congestion avoidance mechanism. Similar works have been
done by Zorzi [7]) on wireless fading links.

These works suggest that a Bayesian state-conditioned model
may be effective in capturing the dynamic behavior of losses and
delays on end-to-end packet channels. The definition of a model
capturing jointly losses and deiays is highly desirable for design-
ing and evaluating coding strategies, such as Multiple Description
Coding (MBPC), Forward Error Correction (FEC), Error Conceal-
ment (EC). Furthermore, the possibility of leaming on-line the

.model parameters opens the way to design efficient content adap-
tation services,

In this paper we propose a comprehensive model that jointly
describes losses and delays and propose a version of the EM al-
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Fig. 2. The Bayesian model for packet channel.

gorithm for learning the mode! parameters. A set of simulations
based on measurements obtained on real packet links confirms how
effective the model can be.

2. THE MODEL

Fig. 1 shows our reference model with a periodic source traffic
with inter-departure period 7" and fixed packet size of N3 bits.

. The system data rate is R = Ny /T bits/s. The network ran-
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domly cancels and delays packets according to current congestion.

Transmitted packets are numbered. n = 1,2,...; ¢, and 7, are
the arrival time and the accumulated delay of the n-th packet re-
spectively, i.e. 7o = tn — nT.

The presence of memery in the phenomena suggested to in-
troduce a hidden state variable that stochastically influences losses
and delays. The state variable is hidden because our knowledge
about it can only be inferred from observation of losses and de-
lays. Let us denole z, the state of the link at time step n, with
Zn € {81,52,...,5N}, 8; being the ¢-th state, and I, € {1, va}
a binary variable where v; and v; correspond respectively to ab-
sence or presence of a loss. Our reference Bayesian model is
shown in Fig. 2 where the arrows represent statistical dependence
among variables. The model can be reduced to an HMM [14],
shown in Fig. 3, with a hidden variable z,, and an observable vari-
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Fig. 3. Hidden Markov Model.
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Fig. 4. An example of the conditional pdf b:(¢) for the hybrid
variable ..

able yn, that represents jointly losses and delays as
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fN('T)} is the set of parame-
= [aij]ivj 1is the state
transition matrix, p = [p1] ~,i8 the loss probability vector, and
{f R . are the delay conditional pdf.i.e.
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Summarizing:

e 1, is a discrete random variable whose dynamic behavior
is governed by the transition matrix A;

& y, is a hybrid random variable that, given {zn, = s;}, is
characterized by the pdf,

bit) = pufilf) + (1 — )3t + 1) . (5
The hybrid variable y- is obtained as a mixture of two compo-
nents (one continuous, the other discrete), where there is a proba-
bility mass concentrated in —1 to model losses while the continu-
ous component describes network delays behavior in the absence
of losses, see Fig. 4.
Ifr = (Tl’1,7|'2, .
tribution, i.e.

, T} is the stationary state probability dis-

= T{iﬂ;&ﬂ{PT(ﬂ?n = 91’)} ic(1,2,..., N} » ©)
the average loss probability and the average delay of the model
are:

lDlos.s
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i=1
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3. LEARNING THE MODEL PARAMETERS

The Expectation-Maximization (EM) algorithm [8] is an optimiza-
tion procedure that allows learning of a new set of parameters
for a stochastic model according to improvements of the likeli-
hood of a given sequence of observable variables. For structures
like HMM of Fig. 3 this optimization technique reduces to the
Forward-Backward algorithm [3][4][5] studied for discrete and con-
tinuous observable variables with a broad class of allowed condi-
tional pdf’s. More specifically, given a sequence of observable
variables y = (y1,v2,...,yk) referred to as the training se-
quence, we want to find the set of parameters such that the like-
lihood L(y; A) = Pr(y|A) of the training sequence is maximum.

The Forward-Backward algorithm is an iterative procedure look-
ing for a local maximum of the likelihood function which typicaily
depends on the starting point A. When necessary, repeated starts
with different initial conditions provide the global solution. [ is
based on the following equations:

- Zk 1 ak(l)atjb:(yk+l)ﬁk+1 (7)

dij = ije{t2...Nr, (8
& T B ld) AELR
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where
ax({j) = Z k-1 (8)ai; b (yn) jg{{fﬁ,ﬁ,‘}} , (12)
i=1
N
Br{i) = Z 505 (yk+1)Br+1(4) fg{{llg,;’.‘:.-.!,;c}—l} , a3
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are the forward and backward partial likelihood, and where
. b i
) = 32 s e I T
i=1 t=yy

The problem of the Dirac-impulse in the conditicnal pdf, Eq.(3),
is avoided considering a modified function

bi(t) = pifult) + (1 = pi)g(t) , (15)
where g(t) is any pdf such that
g(t)=0,vt =0, (16)

to avoid overlapping supports between £;(t) and g(t). Obviously,
while the set { ft(t)}1 , will be adjusted by the iterative proce-
dure, g(t) will remain unchanged, as only its area is relevant. This
means that losses, in the algorithm can be randomized according
to glt).

E)?Jr choice of conditional pdf’s for modelling delays is a clas-
sical Gamma distribution, as suggested by several works [6][9],

ATi—1,—(t/9;)
filey = W T gy
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Fig. 5. Portion of a measured trace on a real network.
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(a) Histogram of measured delays, i.e. of the positive value of wraining
SEqUence in .

Fig. 6. Example of log-likelihood trend in the learning procedure,
2—state model (+), 3—state model (o), 4—state model (a).

while losses are simply randomized according to a narrow uniform
distribution around —1., i.e.

t e [-1-A,~-1+4]

otherwise ’ (8

1
— A

s ={ %
where A is an arbitrary small number.

4. EXPERIMENTAL RESULTS

Measures of losses and delays have been performed on some real
networks using the software Internet Traffic Generator (ITG) [13].
ITG was used to obtain loss-delay sequences of UDP traffic. A
little portion of the sequences was used as the training sequence to
learn model parameters. Performance of trained model are tested
on the remaining portions of the sequences.

In the following it is reported an example in which the inter-
departure period is T = 5 - 1072 s and the packet size is Np = 8-
10° bits, (R = 1.6 Mbps). The link was between the Dipartimento
di Informatica ¢ Sistemistica, Universith di Napoli “Federico 117,
and the Dipartimento di Ingegneria dell’informazione, Seconda
Universita di Napoli. A pertion of the loss-delay sequence is shown
in Fig_ 5. Losses are indicated with negative values of y,,.
Training:

Fig. 6 shows typical trend of log-likelihood evolution during
our EM learning procedure. We have used a training sequence
of 1000 samples, which was used to train models with 2, 3, and 4
states. The algorithm convergence is reached after a few iterations.
The HMM-based modelling appears to be a good strategy as it is
able to capture both losses and delays characteristics quite well.
Fig. 7 shows the delay pdf’s before and after learning with 2—,
3—, and 4—state models, respectivély in Figs. 7(b), 7(c), 7(d),
in comparison to a delay histogram, in Fig. 7(a). The histogram
clearly shows a multi-modal behavior. [t is encouraging to see
how well the model captures at increasing resolution the measured
delay statistics as the number of hidden states is increased. Table
| summarizes the results of the learning procedure in terms of the
average loss probability (Pross), showing how the trained models
capture loss statistics too.
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(b) Continuous term of pdf of a 2—state model before (dashed) and after
(solid) leaming procedure.
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(c) Continuous term of pdf of a 3—state model before (dashed) and after
(solid) learning procedure.
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(d) Continuous term of pdf of a 4—state model before (dashed) and after
(solid) learning procedure.

Fig. 7. Example of delays statistics learning for a 2--,3—, and
4 —state model.

Model Generalization:

A trained model, to be useful. has 10 be tested on data which
was not seen during training. Such generalization property has
been verified for cur model as it matches also future behavior of
the channel. Fig. § shows the log-likelihood of the previous 2—,
3—, and 4—state trained models. Samples of a loss-delay sequence
were grouped in blocks of 1000 consecutive samples. The first
block constituted the training sequence while the other ones the
test set, L.e. rest sequences. The log-likelihood was evaluated for
every test sequence. Circles and asterisks in Fig. 8 comrespond to
the log-likelihood for sequences evaluated respectively for starting
and trained models. 1t can be noted how the trained models exhibit
an almost constant log-likelihocd (the same value as for the train-
ing sequence after training), showing how the channel can be con-
sidered to have stationary statistical characteristics for that time
interval. Meanwhile the starting models exhibit lower and more
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Table 1. Loss probability before and after the learning procedure

compared to statistics of the training sequence.
Ploss

training sequence 0,117

starting model 0.500

2 — state model 0.132

3 — state madel 0,133

4 — state model 0.133

variable values for log-likelihood. Similar behaviors have been
observed on different data sets obtained on different dara links.

5. CONCLUSION

In this paper we have proposed a Bayesian Network whose objec-
tive is to model end-to-end packet channel behavior, jointly cap-
turing losses and delays characteristics. The proposed model gen-
eralizes the HMM description of real channels intreducing a joint
stochastic modelling of losses and delays. Preliminary results are
very encouraging, as the HMM is able to capture losses and delays
characteristics of the network attributing automatically te various
hidden states the dynamics of network congestion status. Future
works will be focused on model improvements, predicting algo-
rithms and content adaptation strategies.
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(a) Log-likelihood for & 2-state model before (dashed, o) and after
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(b} Log-likelihcod for a 3—state model before (dashed, o) and after
(solid, %) learning procedure.
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{c¢) Log-likelihood for a 4—state model before {dashed, o) and after
{solid, *) learning procedure.

Fig. 8. Capacity of generalization of the model by use of log-
likelihood.
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